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AIBtract--Equations are written for the velocities of rotation and translation of rigid rod-like particles 
suspended in arbitrary Stokes flows. These make use of the first approximation from slender body theory 
for the evaluation of drag forces parallel and transverse to the particle axis, and negicct couples induced 
by shear stress at the particle surface. They are therefore asymptotically valid as the particle axis ratio 
becomes large. Simple forms of the equations, applying in constant viscosity flows, are solved, where 
possible analytically and otherwise numerically, and results obtained for particle motion in planar 
Poiseuille and sink flows. These are discussed and displayed in terms of appropriate dimensionless groups 
in a comprehensive set of plots, that can conveniently be used to provide information on translational 
and rotational velocities, and orientation and displacement as a function of time, including particle slip 
along and across streamlines, for a wide range of cases. In this way the effects of non-homogeneity in 
the flow fields are quantified. 
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I N T R O D U C T I O N  

The motion of rod-like particles in flowing suspensions has been the subject of much work, both 
theoretical and experimental. Apart from its intrinsic particle mechanics interest, the topic has 
practical applications in the processing of fibre suspensions for the production of materials 
reinforced with short fibres, and elsewhere. In these technologies, the orientation and spatial 
distributions of particles influence product properties, and mathematical models relating these 
quantities to processing conditions--suspensions flow fields and so on--offer economic advantages 
in process design and optimization. 

The starting point for the theoretical treatment of the low Reynolds number motion of rigid, 
neutrally buoyant particles is the solution by Jeffery (1922) for the motion of an ellipsoid in a 
homogeneous fluid field, i.e. one where velocity gradients are constant throughout the space 
occupied by the particle. Jeffery's equations were expressed in a more general form by Giesekus 
(1962) and Bretherton (1962) using a third rank shape tensor, and Brenner (1964) generalized the 
result to particles of arbitrary shape. For an ellipsoid of revolution (prolate or oblate spheroid) 
the shape tensor can be expressed in terms of the axis ratio, and Brenner's generalization means 
that Jeffery's equations of motion are valid for any axisymmetric particle, such as a square-ended 
rod or fibre, provided that an appropriate equivalent ellipsoid axis ratio is substituted. 

Extensive experimental work, started by Taylor (1923) and continued by Mason and co-workers 
(Goldsmith & Mason 1967) and others, amply demonstrated the applicability of these equations. 
More recently, Jeffery's equations have formed the basis of a number of works seeking to predict 
fibre orientation during the flow and processing of fibre suspensions (e.g. Harris & Pittman 1976; 
Salariya & Pittman 1980; Givler et al. 1982; Gillespie et al. 1985; Vincent & Agassant 1985). They 
also underlie work developing constitutive equations for fibre suspensions (Dinh & Armstrong 
1984; Lipscombe et al. 1988). Extensions to account for fibre-fibre interactions have been made 
by Folgar & Tucker (1984) and used to predict fibre alignment distributions in moulded parts 
(Jackson et al. 1984; Tucker 1984). 

In all of these works the assumption that flow fields are homogeneous is retained, i.e. velocity 
gradients are taken to be constant throughout the region occupied by a particle. In many practical 
cases, however, this is not valid; for example, in injection or compression moulding using resins 
containing fibres, fibre length is often of the same order as part thickness, and velocity profiles 
during flow in the mould will show substantial variations of velocity gradient over a fibre length. 
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In some instances, polymer molecules in solution can be modelled as rigid rods, and their motion 
in non-homogeneous flow fields, specifically orientation distributions and migration along or across 
streamlines, is of considerable interest. Whilst the corresponding problem for flexible macro 
molecules has been addressed using the bead-spring model by, for example, Jhou (1985) and Brunn 
(1985), analyses of rigid rod motion in non-homogeneous flow fields have become available only 
in the last couple of years. 

The present paper elaborates on the work of Kasiri (1988), where general equations for inertialess 
rotation and translation in arbitrary Stokes flows were derived, and solved analytically or 
numerically for a number of specific cases. Simultaneously, Shanker et al. (1990, 1991) were 
working independently in the same area. They obtained the same general equations, and applied 
them in one-dimensional planar shear flows. The emphasis in their work was on an investigation 
of the effects of non-homogeneous flow on the rheological properties of the supsension. In the work 
now described, the emphasis is, in contrast, on the motion of individual particles. The derivation 
of the general equations governing rotation and translation is briefly re-stated, with some additional 
comments. For the special case of constant viscosity flows, analytic results are obtainable for some 
simple cases. We consider one-dimensional planar shear flow and cylindrical sink or source flow, 
and derive expressions for angular and translational particle velocities. For the planar flow these 
are integrated analytically to give particle orientation and translation as functions of time; for the 
sink flow quadrature is necessary. Results are presented, in terms of appropriate dimensionless 
groups, that illustrate and quantify the effects of flow non-homogeneity on particle motion. 

MOTION OF A ROD-LIKE PARTICLE IN A G E N E R A L  STOKES FLOW 

Consider a slender particle of characteristic radius R, neutrally buoyant in suspension. Identify 
a point on the particle axis by the co-ordinate l, with the origin at the particle centre, and 
- L ~< 1 ~< L. Express the instantaneous position of the point l by the position vector x(l) relative 
to a fixed Cartesian frame. Denote the undisturbed fluid velocity at position x by v(x) and the 
velocity of a point on the particle axis by u(l). As a consequence of the local relative velocity, 
v(l) - u(1), the fluid exerts a force f(l) per unit length on the particle, and for conditions under which 
fluid inertia is negligible, slender body theory (Cox 1970) provides the following result: 

2rr/~ L In x -t -(~n ~2- "[pp - 2I] 

(1) 
+ (ln x)-----T" [3pp - 21] + 0 ~ , [11 

where 2 is a dimensionless measure of local particle radius, I is the identity tensor (Kronecker delta) 
and p is a unit vector directed in the positive l direction, tangential to the particle axis, and 
x = R / 2 L .  The vector a is given by 

iF r,-, l( (X i -- X;)(Xj--Xj)) 
a,(1) =  LJo + j,+, J\Ix- x'l + ~I ~ 

- ip jp~)(v~( l  ) - u~(l')) dZ'. [la] 

Here x denotes x(l) and x' denotes x(l'), c is arbitrary, 0 < E ~ 1, and it can be shown that f(l) 
is independent of E in the limit c -~ 0. Equation [1] applies for a particle of any shape x(l), provided 
only that its radius of curvature at all points is not less than of order 2L. 

An important property of [1], for the present purposes, is that in the first approximation (the 
term in I/In x) the local force and relative velocity are linearly related through a tensorial drag 
coefficient: 

D = D± (I - pp) + D _  pp, 
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where the coefficients associated with the components of the slip flow perpendicular and parallel 
to the particle axis are Dx and D= and D= = ½D± = (2n#)/ln x. This convenient representation no 
longer holds when terms in (I/In x) 2 are included, because of the integration over particle length 
involved in evaluating a. 

To simplify the subsequent working, and in common with Shanker et al. (1990), we therefore 
use only the first approximation, so that our results are strictly valid only asymptotically as the 
particle aspect ratio tends to infinity. Neglect of the second-order terms in the slender body result 
introduces a fractional error in f or order I1/In x I; for example, for a typical fibre, as used in material 
reinforcement, with length 1 mm and diameter 10 #m, I1/ln x[ = 0.19. This, however, forms a very 
conservative estimate of error in the results to be derived since, under the assumption of inertialess 
particle motion, absolute values of the drag coefficients are immaterial in the analysis. 

Making the assumption of inertialess particle motion, we set the total force on the fibre to zero: 

0 = f ( l )  dl = D .  ( v  - u tr - p l )  a / .  [21 

- L  L 

Here u(l) has been decomposed as 

u(t )  = u ~ + ~t  [3] 

and u tr is the translational velocity of the fibre centre. 
When the radius of the particle is constant along its length, and the fluid viscosity is constant, 

then D is constant and it follows from [2] that 

1 f+L = v d l .  [4]  utr  ~ - L 

This is the result for translational velocity, previously obtained by Shanker et al. (1990). 
To obtain a result for angular velocity, consider the couple acting about the particle centre. This 

arises, in general, from two sources: the component of f due to a non-zero component of the relative 
velocity perpendicular to the fibre axis, and acting with lever arm l; and shear stress at the particle 
surface, due to that component of the relative velocity which is zero on the particle axis, and acting 
with a lever arm equal to the particle radius. The latter couple has been considered by Cox (1971) 
for a slender, straight, axisymmetric particle in a uniform shear flow, and an expression for the 
couple, denoted G", acting on the particle as it lies along a streamline of this flow was derived for 
the case where the particle radius goes smoothly to zero at the ends. No analytic result could be 
obtained for blunt-ended bodies, such as chopped fibres, though Youngren & Acrivos (1975) 
obtained values of G" from numerical solutions of the creeping flow equations around a circular 
cylinder. These, though, are for the total couple in a uniform shear field. No result is available for 
the local couple, as a function of l, in the case where shear rate varies along the particle axis. The 
effect of this couple for particles of large aspect ratio is relatively slight, except when the particle 
axis lies close to a plane of shear, when it is responsible for slow rotation across the streamline. 
In view of its limited importance, and the lack of a precise means for calculating its value, the 
shear-induced couple is therefore neglected in the present work. The consequence of this is that 
our results for rotation of finite aspect ratio particles in a shear flow show an asymptotic approach 
of the particle axis towards the plane of shear, behaviour that is only valid asymptotically for 
particles of very large aspect ratio. 

The total couple on the particle is therefore written as follows and equated to zero for inertialess 
motion: 

0 = p x f l  d l  = p x D "  ( v  - u tr - l~l)l dl. [5]  
- L  - L  

For constant D it follows that 

• 3 f+" vl dl. [6] P=~-5  -L 

This result for particle rotation was also obtained by Shanker et al. (1990). 
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The requirement for constant viscosity restricts the class of  steady flows v that may be used in 
[4] and [6]. For more general flows, where viscosity varies through dependence on local shear rate, 
temperature etc., [2] and [5] must be used, and numerical integration will generally be needed. (It 
appears though, that Shanker et  al. have used [4] and [6] in a variable viscosity planar shear flow 
with a complex velocity profile, as observed during injection moulding of  a plastic.) 

In the following sections we derive results for particle motion in some simple constant viscosity 
flows. 

P L A N A R  S H E A R  FLOWS 

Consider flows of  the form 

v~=vl(x2), v2=v3=O. 

It is convenient to express p in terms of  Euler angles (figure 1), and we write 

= = vol d l  

and 

where 

[7] 

[8a] 

3; 
/5, = 6 sin 0 = ~ v , l  dl, [8b] 

L 

v0 = v, sin ~b sin 0, 

/), = V I C O S  (b, 

x2 = 1 sin 0 cos ~. [9] 

The velocity field may be expressed in terms of  an expansion about the particle centre, though for 
steady, constant viscosity flows, momentum conservation requires that derivatives of  order 3 and 
higher are zero: 

v, (1) = j=~0 7 (1 sm 0 cos O) j, [10] 

where v[~ j) represents t he j th  derivative with respect to x2 at l = 0. In transient flows higher order 
derivatives may exist, and we could extend [10] to represent an instantaneous velocity profile. In 
this way, the results that follow could also be extended, to give instantaneous velocities of rotation 
and translation in transient planar shear flows; in the following, however, we consider only steady 
flows. 

3 t I=L 

yD...:/  i 
/ \ . . !  

/ "-4 
Figure 1. Cartesian co-ordinate system and Euler angles for description of particle orientation. 
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Using [4], it follows that 

2 V ~2./) L ~ 
u~ r -- ~ - -  (sin 0 cos 0 )  ~, u~ = u~' = 0. [11] 

j-0 (2j)! (2j + l) 

It is clear that in this class of  flows, there is no motion of  the fibre centre across streamlines, but 
slip along the streamline will occur in all flow fields other than the linear one. 

From [8]-[10] the angular velocities are given as 

2 v~+ I) 3L2J 
= sin ~ cos 0j.~o (2j + 1)! (2j + 3) (sin 0 cos ~)2j+ i [12a] 

and 

2 v[2j+ I) 3L ~ 
= ~ sin 2j 0 cos ~'+2 Oh. [l 2b] (~ ¥ T), (2j 3-----~ + 

We note that only even-order derivatives of  the undisturbed fluid velocity are involved in 
determining the translational velocity, and only odd-order derivatives in the rotation. 

Linear flow field 
For 

we have from [12a,b] 

and 

vl=~x2, v2=v3=O, ~ = c o n s t ,  [13] 

= -~ sin 20 sin 2~ [14a] 

= ~ cos 2 qb. [14b] 

These are to be compared with the results from Jeffery's (1922) theory, written with an equivalent 
ellipsoid axis ratio, re, 

~= r. 2 - 1  
4(r~ -- 1------~ ~) sin 20 sin 2~ [15a] 

and 

ffi ~ (r, 2 cos 2 0 + s in2 ~b), 
r , + l  

[15b] 

which tend to the expressions derived here as r, ~ oo provided ~ # ~/2. This is the expected 
behaviour, given the present use of  the first approximation from slender body theory, and the 
neglect of  shear-stress-induced couples. 

As regards the translational velocity u ~, it is trivial to show that the particle centre moves with 
the velocity of  the displaced fluid. 

Quadratic flow field 
Considering terms to the second order in [12a,b], it is apparent that the angular velocities are 

the same as for the linear case, [14a,b]. Integrating these with respect to time 

~b = tan-I(v(0i)t + Cl) [16a] 

and 

0 = tan-I (c :x / l  + (vtol)t + c)~), [16b] 
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where 

Cl = t a n  ~ i ,  C 2 = tan 0~ COS q5~; 

0i and ~b i being the values at zero time. Taking terms up to second order in [11], and substituting 
from [16a,b], we integrate for the displacement of the particle centre: 

Ax = v0 t + 6v(0~ ~ / " '  c~ ~ tan-I / ~ )  . . . .  tan- ~ . . [17] 

The second term here represents the most interesting aspect of  the motion in a quadratic flow 
field--slip of the particle centre along the streamline. To display this, it is convenient to introduce 
a dimensionless slipped distance: 

Axs*--L2v(o2 ) 6 / l ~ c ~ [  / l ~ 2 2 ) - - t a n - I  [18] 

(i.e. if the particle centre falls behind the flow, then positive slip occurs); t* is the dimensionless 
time V~o~) t. 

Bearing in mind the definition of c~ and c2, it is clear that 

A x *  = F(O~, ¢b~, t*) .  [19] 

Space does not allow us to illustrate the dependence over a range of all three independent 
variables. Figure 2, however, shows one of the most interesting cases: the particle lies initially 
perpendicular to the streamlines, $~ = 0 °, and rotates until it asymptotically approaches the 
streamline, $ = 90 °. The distance slipped during this rotation is plotted as a function of the release 

or 

90 

60 

30 

I I I I I I I I I I I I 

0 20 /,0 60 80 100 120 1/,0 160 180 200 220 2/,0 260 

x s x 10 3 

Figure 2. Dimensionless slipped distance, x * ,  dur ing rotat ion f rom ~ = 0 ° to 90 ° in the quadrat ic f low 
as a funct ion o f  the release angle 0 i. 
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angle 0~. At 0i = 0, the particle lies in a plane of shear and does not slip. As 0i increases, slip 
increases, and increases more rapidly as 0i--* 90 °, with 

Ax*--*-~ as 0 i~90  °. [20] 

Of course, ~b approaches 90 ° only as t* --* ~ ,  and the result above can be obtained by taking this 
limit in [18]. 

C Y L I N D R I C A L  SINK OR SOURCE FLOW 

Analytic results for velocities o f  translation and rotation 

Equations [4] and [6] are now applied to a rigid rod-like particle lying in the rO plane of a 
cylindrical polar system, and experiencing the flow: 

c 
Vr.~--- , V O = U z = O .  [21] 

r 

Let the particle centre be instantaneously at radius r0, and set up a Cartesian co-ordinate system 
with its origin at this point, see figure 3. The undisturbed fluid velocity at point l on the fibre axis 
has components referred to this system: 

and 

c(ro + l sin ~b) [22a1 
V 1 (l) = 12 + rg + 21to sin ~b 

cl 
v2(l) = 12 + r~ + 21ro sin 4~. [22b] 

Substituting into [1] for the translational velocity, and integrating one obtains 

c 
U[ r m. ~-~  (sin ~b In A + 2 cos ~b tan -I B) 

and 

where 

c 
u[ r = ~-{ (cos ~b In A -- 2 sin ~b tan -1 B), 

A r2 + 1 + 2 sin ~b ro 
, B 

r-'~o + 1 - 2 sin 4~ 

[23a] 

[23b1 

r 

1 

/ 
0 /  

-7 
/ 

Figure 3. Geometry and co-ordinate systems for a rod-like particle in the cylindrical sink/source flow. 
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Defining the relative velocity of  the particle centre along the streamline as 

C 
us = -- - u~r [24] 

F0 

and scaling this by the undisturbed fluid velocity, C/ro, at the current  position o f  the fibre centre, 
the dimensionless relative velocity is written as 

r 0 1 
Us* = -c u~ = 1 - ~-~ (sin q~ In A + 2 cos ~ tan ~ B). [25] 

r0 

In the present case, particle migrat ion across the streamline is clearly also possible, and we have 
for the dimensionless migrat ion velocity 

US r 0 U~ r l = c = ~ (cos q~ In A - 2 sin tp t an - l  B). [26] 

r0 

To  obtain the angular  velocity, q~, we first need the ~ - c o m p o n e n t  o f  undisturbed fluid velocity at 
posit ion / (see figure 3): 

cro cos q~ [27] 
v¢(l) = F + r~ + 21r0 sin q~" 

On substituting into the qS-component form of  [6], the dimensionless angular  velocity is given as 

q~, = 4; r0: _ 3 c 4L 3 (cos q5 In A - 2 sin 4~ tan-~ B). [28] 

r0 ~ 

It is clear that  the dimensionless forms o f  the relative and migrat ion velocities, and the angular  
velocity are all dependent  on the instantaneous orientat ion 4~ and dimensionless particle position 
L/ro in the radial flow: 

and q~* =F(~b ,  L ) .  [29] us* ~ u~ 

The  dependence o f  u* on q~ is shown in figure 4 with a family o f  curves having L/ro as parameter .  
As L/ro~O,  u* ~ 0  for  all ~b; this can be shown by applying de l 'H6pitals  rule to [25], or argued 

0.1 

0.0 

-0.1 

-0.2 

LI* 
. s -0.3 

-0.~ 

-0.5 

-0.6 

- ~ _  t 0.2 / - - 0 . 6  
: 01 0 3  - 

is zo 2s 30 3s ,.o ,.s so ss ~ . ~ 
_ "  . . . . . . . . . .  ¢ o  ~ ' ~ . . ~ - " - - - - - - - - - - - z L  

0.7 

Figure 4. Dimensionless relative velocity along the streamline, u*, vs particle orientation ~b; parameter 
L/ro=O.1 to 0.9. 
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on physical grounds by considering the fibre length to shrink to zero. For non-zero L/r o, positive 
slip occurs at low values of 4 and negative slip at values approaching 90 °. The reasons for this 
can be understood by considering the variation of undisturbed fluid velocity along the length of 
the particle. For 4 = 0°, the particle lies perpendicular to the radial streamline through its centre 
and the fluid velocity here is greater than that at the particle ends. The mean fluid velocity 
experienced is therefore lower than the value at the centre, and the particle falls behind the flow, 
giving positive slip. The dimensional relative velocity increases more rapidly than the undisturbed 
fluid velocity as the particle approaches the flow sink. Thus, the dimensionless relative velocity u* 
increases as L/ro increases. When 4 = 90°, the particle lies along a streamline, and as a consequence 
of the hyperbolic form of the velocity field, the mean velocity along the particle is greater than that 
at the centre point. The particle therefore moves ahead, giving negative slip. The dimensional 
relative velocity increases in magnitude more rapidly than the undisturbed flow as r0 decreases; thus, 
u~* becomes more negative as L/r o increases. At intermediate values of 4 it follows that the relative 
velocity passes through zero. The switch to negative values occurs at higher 4 values for larger L/ro. 

One of the most interesting aspects of particle motion in the radial flow field is the occurrence 
of cross-streamline migration, a phenomenon never shown by rigid particles at low Reynolds 
number in unbounded parallel homogeneous flows. Figure 5 displays the dimensionless migration 
velocity, u2*, as a function of orientation 4, in a family of curves with parameter L/r o. As with 
u*, u*-*0 as L/ro-+O for all 4. It is clear that for 4 = 0° a n d 4  = 90 ° no migration will occur, 
and that the magnitude of u* will attain a maximum at some intermediate orientation. As L/ro 
increases, the position of this maximum moves closer to 4 = 90°, and the magnitude of  u~', which 
is negative, increases. The physical interpretation of this is that for a source flow, c > 0 in [21], 
a particle lying in the 0 ° < 4 < 90° quadrant migrates in the positive 02  direction, s¢¢ figure 3. If  
either the flow direction is reversed, or the particle lies in the 90 ° < 4 < 180° quadrant, the direction 
of  migration is reversed. 

Dimensionless angular velocity,.~ *, is shown as a function of 4 and L/ro in figure 6. It can be 
shown from [29] that as L/r o -+ 0, 4 * ~ - 2  sin 4 cos 4. This is the result to be expected, as particle 
length tends to zero, and fluid velocity gradients over the particle tend to a constant. It was 
previously derived directly for this case by Harris & Pittman (1976). In this limiting case, the 
magnitude of ~* is a maximum at 4 = 45°, where it equals - 1. As L/ro increases, the maximum 
shifts closer to 4 = 90°, and increases in magnitude. The behaviour is qualitatively similar to that 
shown by u*--both types of motion being driven in a similar way by differences in magnitude and 
direction of the fluid velocity reactors at opposite ends of the particle. For a source flow, c > 0, 
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Figure 5. Dimensionless migration velocity across streamlines, u~', vs particle orientation ~b; parameter 
L/r o = 0.1 to 0.9. 
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Figure 6. Dimensionless angular velocity, ~*, vs particle orientation ~b; parameter L/r o = 0.1 to 0.9. 

the negative values of ~ * correspond to rotation towards ~ = 0 °, perpendicular to the streamline. 
Reversing the direction of flow, c < 0, of course brings about rotation towards tk = 90 °, and the 
approach to these limiting orientations is asymptotic. The effect of flow field inhomogeneity is thus 
seen to decrease the angular velocity at low ~b, and increase it as ~b ~ 90 °. 

Numerical results for  displacement and orientation 

The foregoing results for the relative, migration and rotation velocities have been integrated 
numerically using a computer program to evaluate the integrals in [4] and [6]. 

The particle length, 2L, is divided into an even number of segments, N, of equal size, with nodes 
placed at the segment junctions and particle ends. For a given particle centre position and particle 
orientation, expressed in Euler angles (0, ~b), co-ordinates of the nodal points are calculated, 
referred to a Cartesian or polar co-ordinate system. A subroutine defining the undisturbed velocity 
field is entered with these co-ordinates and returns velocities v(l) at the nodes. The integrals are 
evaluated using Simpson's rule. 

Particle displacements and orientation as a function of time are calculated by integrating u 'r and 
1~ using the simple Euler method. 

The programme was tested by ensuring precise agreement with a number of the analytic formulae 
that have been described. For the cases of interest, where no analytic results are available, thorough 
convergence studies were carried out, to determine satisfactory levels of particle length and time 
discretization. Details are given by Kasiri (1988). The accuracy in all the results displayed is greater 
than the precision of reading the graphs. 

Dimensionless results for particle orientation, distance slipped and cross-streamline motion are 
presented in figure 7 as functions of particle centre displacement and time, in families of curves 
with parameter ~b i, the initial orientation. In all cases the ratio of particle half length L to initial 
particle centre position r0i is 0.9. In these results, the distance slipped is scaled by r~ and time by 
r~./c. These plots are now described; they may be used to provide quantitive information on particle 
motion for a wide variety of cases by entering the plots at appropriate points [see Kasiri (1988) 
for worked examples]. 

Figure 7(a) shows how the orientation ~b changes, starting from various release values ~i between 
10 ° and 80 °, as the particle centre moves outwards in the radial flow field (c > 0, [21]). Particle 
position is expressed in dimensionless form as the ratio of the current radial co-ordinate of the 
centre r 0 to the initial value r0,. As ro/roi increases, ~b decreases asymptotically towards zero, as the 
particle tends to align along the principal strain axis of the fluid flow. The rate of change is more 
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rapid for larger ¢~i, a s  expected from the results on angular velocity shown previously in figure 6. 
At ro/r ~ = 5, ~ < 9 ° for all release angles 10 ° ~< ~b i ~< 80°; and at ro/r~ = 10, ~b < 2.5 °. 

It is interesting to compare the particle rotation shown here with that predicted using 
homogeneous flow field theory. Using the assumption that velocity gradients are constant over the 
length of the particle, and equal to the values applying at the particle centre, Harris & Pittman 
(1976) obtained the following simple expression relating orientation to particle centre position: 

tan~b = ( r ~ y  [30] 
tan~bi k r0 /  " 

The corresponding curve ( - - - )  for a release angle ~i = 80 ° is shown in figure 7(a). Rotation 
towards Q = 0 ° is less rapid than when non-homogeneity is taken into account--the maximum 
difference being a lag of about 12 ° at ro/r~ ,~ 2.3. 

Figure 7(b) provides information on cross-streamline migration, in terms of changes in the 
angular position, ~0, of the fibre centre (see figure 3), again as a function of ro/r~, and with ~i as 
parameter. The changes are initially rapid, with the largest changes corresponding to large ~i, and 
settle to effectively constant values for ro/r~ > 3, as q~ approaches low values [figure 7(a)]. This 
behaviour is understandable in view of the results on cross-streamline migration velocity already 
displayed in figure 5. It is interesting to note that the curve corresponding to q~i = 80 ° lies below 
that for ~i = 70 ° in figure 7(b); this is because, as shown in figure 6, the initial migration velocities 
for these cases (with L/ro = 0.9) lie on either side of the maximum in the migration velocity 
magnitude. 

Figure 7(c) displays the dimensionless distance slipped along the streamline. For ~i = 80°, the 
relative velocity is initially negative, see figure 4, but changes sign as ~ decreases. As a result, the 
slipped distance at first increases negatively, reaches a peak and then moves to positive values as 
ro/r~ increases. For release angle q~i < 60°, the slipped distance is always positive, increasing as ~ 
decreases, corresponding to the higher relative velocities shown in figure 4 at low qS. Finally, figure 
7(d) gives the fibre centre position r0 ~< r~ as a function of dimensionless time, t*. Here, curves for 
10 ° ~< ~b~ ~< 80 ° almost superimpose, bringing out the point that slip along the streamline is relatively 
small in all cases. 
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Figure 7(a)--caption overleaf. 
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Figure 7(d) 

Figure 7. Particle motion as a function ofdimensiontess instantaneous position of the particle centre ro/r ~ . 
Dimensionless particle half  length L / r ~  = 0.9 in all cases; parameter,  release angle ~b i = 10 ° to 80 °. (a) 
Orientation ~b--the dotted line is obtained from homogeneous flow theory, for ~i = 80°. (b) Cross-stream- 
line migration in terms of change in angular position, 60, of the particle centre. (c) Dimensionless distance 

slipped along the streamline, x~*. (d) Dimensionless time, t*. 

C O N C L U S I O N  

General expressions have been derived for the motion of slender, rigid rod-like particles 
suspended in non-homogeneous Stokes flows and their validity and inherent simplifications 
discussed in some detail. Using simplified forms of these results a detailed study has been made 
of particle motion in some simple, steady, constant viscosity velocity fields. Where possible, analytic 
results for translation and rotation are derived, and in other cases solutions are obtained 
numerically, using a procedure capable of handling three-dimensional flows. Particle motion in 
planar Poiseuille and sink flows is displayed in terms of appropriate dimensionless quantities in 
a comprehensive set of plots, that conveniently provide quantitative information for a wide range 
of cases, for example, the differences in rotation and orientation arising from various degrees of 
inhomogeneity in the flow field, and the extent of slip along and across the streamlines. This 
information has not previously been available, and is of general interest in particle mechanics. It 
also has practical applications in estimating particle orientation produced by the given classes of 
flow, and in assessing the possibility of inhomogeneities developing in suspension concentration 
due to particle slip relative to the flow. 
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